The Deep X G20 series demonstrates exceptional AI computing capabilities in comprehensive performance testing, particularly the flagship G20 Pro Max model with its 1824 TOPS combined computing power, surpassing NVIDIA DGX Spark in multiple benchmarks. This report details performance metrics across various workloads.
Test Platform | CPU | GPU | Memory | Storage |
---|---|---|---|---|
Deep X G20 | Intel Core Ultra 7 265F (20-core) | RTX RRO 2000 (8GB) | 96GB DDR5-6400 | 2TB NVMe Gen4 |
Deep X G20 Pro | Intel Core Ultra 7 265 (20-core) | RTX RRO 4000 (16GB) | 128GB DDR5-6400 | 4TB NVMe Gen4 |
Deep X G20 Pro Max | Intel Core Ultra 9 285 (24-core) | RTX RRO 5000 (24GB) | 192GB DDR5-6400 | 4TB NVMe Gen4 |
NVIDIA DGX Spark | 20-core ARM Processor | Integrated GPU | 128GB LPDDR5x | 1TB NVMe |
Test Conditions: Batch size=1, Sequence length=2048, 4-bit quantization
Model | Throughput (tokens/s) | First Token Latency (ms) | Relative Performance |
---|---|---|---|
NVIDIA DGX Spark | 185 | 142 | 100% (Baseline) |
Deep X G20 | 156 | 168 | 84% |
Deep X G20 Pro | 245 | 107 | 132% |
Deep X G20 Pro Max | 338 | 78 | 182% |
Test Conditions: FP16 precision, Batch size=8
Model | Batch Throughput (req/s) | Average Latency (ms) | GPU Utilization |
---|---|---|---|
NVIDIA DGX Spark | 12.5 | 640 | 78% |
Deep X G20 | 15.2 | 526 | 85% |
Deep X G20 Pro | 24.8 | 323 | 92% |
Deep X G20 Pro Max | 31.6 | 253 | 94% |
Test Conditions: 1024×1024 resolution, 50 sampling steps
Model | Generation Speed (img/min) | Batch of 16 (seconds) | VRAM Usage |
---|---|---|---|
NVIDIA DGX Spark | 18 | 53.3 | N/A |
Deep X G20 | 12 | 80.0 | 7.2GB |
Deep X G20 Pro | 20 | 48.0 | 14.5GB |
Deep X G20 Pro Max | 30 | 32.0 | 21.8GB |
Test Conditions: 1080p video stream, YOLOv8x model
Model | FPS | Latency (ms) | mAP@0.5 |
---|---|---|---|
NVIDIA DGX Spark | 67 | 14.9 | 0.89 |
Deep X G20 | 85 | 11.8 | 0.89 |
Deep X G20 Pro | 142 | 7.0 | 0.89 |
Deep X G20 Pro Max | 195 | 5.1 | 0.89 |
Test Conditions: Batch size=32, Sequence length=512
Model | Training Speed (samples/s) | Convergence Time (hours) | Energy Consumption (kWh) |
---|---|---|---|
NVIDIA DGX Spark | 320 | 8.2 | 1.39 |
Deep X G20 | 285 | 9.2 | 2.76 |
Deep X G20 Pro | 480 | 5.5 | 1.65 |
Deep X G20 Pro Max | 570 | 4.6 | 1.38 |
Test Conditions: Image-text matching task, Batch size=128
Model | Throughput (pairs/s) | CPU Utilization | GPU Utilization |
---|---|---|---|
NVIDIA DGX Spark | 850 | 45% | 72% |
Deep X G20 | 920 | 38% | 88% |
Deep X G20 Pro | 1,450 | 42% | 91% |
Deep X G20 Pro Max | 1,880 | 35% | 93% |
Model | Peak Power (W) | AI Performance (TOPS) | Efficiency (TOPS/W) |
---|---|---|---|
NVIDIA DGX Spark | 170 | 1000 | 5.88 |
Deep X G20 | 300 | 798 | 2.66 |
Deep X G20 Pro | 300 | 1334 | 4.45 |
Deep X G20 Pro Max | 300 | 1824 | 6.08 |
During 24-hour continuous inference testing:
Framework/Tool | Deep X G20 Series | NVIDIA DGX Spark |
---|---|---|
PyTorch | ✅ 100% | ✅ ARM version required |
TensorFlow | ✅ 100% | ✅ Some features limited |
ONNX Runtime | ✅ 100% | ✅ 100% |
CUDA/cuDNN | ✅ 100% | ✅ 100% |
OpenVINO | ✅ Native support | ❌ Not supported |
DirectML | ✅ Windows native | ❌ Not supported |
Docker/K8s | ✅ 100% | ✅ ARM images required |
Test Content: 32-channel 1080p surveillance video real-time analysis
Metric | Deep X G20 Pro Max | NVIDIA DGX Spark |
---|---|---|
Concurrent Processing Channels | 32 | 20 |
Face Recognition Accuracy | 99.2% | 99.1% |
Behavior Analysis Latency | <50ms | <80ms |
24-hour Stability | 100% | 100% |
Test Content: CT image 3D reconstruction and lesion detection
Metric | Deep X G20 Pro Max | NVIDIA DGX Spark |
---|---|---|
3D Reconstruction Speed | 2.3 sec/scan | 4.1 sec/scan |
Detection Accuracy | 96.8% | 96.5% |
Batch Processing Capacity | 50 scans/hour | 28 scans/hour |
Test Content: PCB defect detection, 4K resolution
Metric | Deep X G20 Pro Max | NVIDIA DGX Spark |
---|---|---|
Inspection Speed | 120 boards/min | 72 boards/min |
False Detection Rate | 0.02% | 0.03% |
Minimum Defect Size | 0.1mm | 0.1mm |
Test Item | Deep X G20 Pro Max | Test Result |
---|---|---|
Continuous Runtime | 168 hours | ✅ Pass |
Performance Degradation | <1% | ✅ Excellent |
Memory Leaks | None detected | ✅ Pass |
Temperature Stability | 65°C±3°C | ✅ Stable |
Error Rate | 0 | ✅ Perfect |
Running continuously for 24 hours at 100% GPU load:
Scenario | Recommended Model | Rationale |
---|---|---|
Entry-level AI Development | G20 | Best value, meets basic requirements |
Enterprise Deployment | G20 Pro | Balanced performance and cost |
High-Performance Computing | G20 Pro Max | Maximum performance for critical tasks |
Edge Inference | G20/G20 Pro | Controlled power consumption, sufficient performance |
Large Model Serving | G20 Pro Max | Large memory, high throughput |
Based on current performance test results, Deep X G20 Pro Max compared to similar products:
Test Notes: